Consider a $2 D$ autonomous system

$$
\frac{d x}{d t}=f(x, y) \quad \frac{d y}{d t}=g(x, y) \text { where } \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial g}{\partial x}, \frac{\partial g}{\partial y} \text { are continuous. }
$$

Then by existanc/uniqueness, only one solution passes through each pt in space, So we con draw out vector fields in the phase plane,

Optonn 1: Draw ont vector fields fields for each pt using $\left(\frac{d x}{d t}, \frac{d y}{d t}\right)$
Option 2: Use null cline analysis.
Deft. 5.7 The x-zero $\widetilde{\text { Bucline }}$ (or x-nullaline) is the set of points (x, y) satisfying $f(x, y)=0$.
The y-zero Beeline (or y-nullcline) is the set of all pouts (x, y) satisfying $g(x, y)=0$.

Note: The x - and y-nallolines intersect at equilibrial.
Also, on an x-nulcine, solutions can orly mise up/down y-uullicline, solutions cm only move left/right.

Ex. 5.13 $\quad \frac{d x}{d t}=x y-y=y(x-1)=f(x, y) \quad f(0,3)=-3$

$$
\begin{aligned}
& \frac{d y}{d t}=2 x-x y=x(2-y)=g(x, y) \\
& x \text {-nullcline: } 0=y(x-1) \Rightarrow y=0 \text { or } x=1 \\
& y \text {-nullcline: } 0=x(2-y) \Rightarrow y=2 \text { or } x=0
\end{aligned}
$$

$$
g(0,3)=0
$$

Equillaria: $(0,0),(1,2)$
Exercise for viewer: Arrow direction along a nulleline

Exerise for viewar: Arrow diration along a nulleine varies continuously except at an equitibrion, wher it'll change direction if $\operatorname{det}(J) \neq 0$.

$$
\begin{aligned}
& J(x, y)=\left(\begin{array}{cc}
y & x-1 \\
2-y & -x
\end{array}\right) \\
& J(0,0)=\left(\begin{array}{cc}
0 & -1 \\
2 & 0
\end{array}\right) \\
& J(1,2)=\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right) \\
& \text { det }=2, T_{r}=0 \\
& \text { det }=-2 \quad T_{r}=1 \\
& \lambda_{1,2}= \pm i \sqrt{2} \\
& \lambda_{1}=2 \quad \lambda_{2}=-1 \\
& \underbrace{V_{1}=\binom{1}{0}}_{\substack{\text { unstalle } \\
\text { manitald }}} \quad \underbrace{V_{2}=\binom{0}{1}}_{\substack{\text { stable } \\
\text { maitold }}}
\end{aligned}
$$

